# Getting Started ## Installation ``` pip install MillionTrees ``` To be able to recreate the training examples, install the optional packages ``` MillionTrees[training] ``` ## Load the data ``` from milliontrees.datasets.TreePoints import TreePointsDataset dataset = TreePointsDataset(download=True, root_dir=) for image, label, metadata in dataset: image.shape == (3, 100, 100) label.shape == (2,) # Two fine-grained domain and a label of the coarse domain? This is still unclear see L82 of milliontrees_dataset.py assert len(metadata) == 2 break ``` ### Train a model ``` trainer.fit(model, train_dataloader) ``` ## Evaluate predictions ``` from milliontrees.common.data_loaders import get_eval_loader # Get the test set test_data = dataset.get_subset( "test", transform=transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor()] ), ) # Prepare the data loader test_loader = get_eval_loader("standard", test_data, batch_size=16) # Get predictions for the full test set for x, y_true, metadata in test_loader: y_pred = model(x) # Accumulate y_true, y_pred, metadata # Evaluate dataset.eval(all_y_pred, all_y_true, all_metadata) # {'recall_macro_all': 0.66, ...} ``` ## Submit to the leaderboard We accept submissions as .csv files